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Abstract—As the scale and complexity of multi-agent robotic
systems are subject to a continuous increase, this paper considers
a class of systems labeled as Very-Large-Scale Multi-Agent
Systems (VLMAS) with dimensionality that can scale up to the
order of millions of agents. In particular, we consider the problem
of steering the state distributions of all agents of a VLMAS
to prescribed target distributions while satisfying probabilistic
safety guarantees. Based on the key assumption that such systems
often admit a multi-level hierarchical clustered structure - where
the agents are organized into cliques of different levels - we asso-
ciate the control of such cliques with the control of distributions,
and introduce the Distributed Hierarchical Distribution Control
(DHDC) framework. The proposed approach consists of two sub-
frameworks. The first one, Distributed Hierarchical Distribution
Estimation (DHDE), is a bottom-up hierarchical decentralized
algorithm which links the initial and target configurations of
the cliques of all levels with suitable Gaussian distributions.
The second part, Distributed Hierarchical Distribution Steering
(DHDS), is a top-down hierarchical distributed method that steers
the distributions of all cliques and agents from the initial to the
targets ones assigned by DHDE. Simulation results that scale up
to two million agents demonstrate the effectiveness and scalability
of the proposed framework. The increased computational effi-
ciency and safety performance of DHDC against related methods
is also illustrated. The results of this work indicate the importance
of hierarchical distribution control approaches towards achieving
safe and scalable solutions for the control of VLMAS. A video
with all results is available here.

I. INTRODUCTION

Multi-agent systems in robotics are experiencing an increas-
ing popularity with several significant applications such as
multi-robot coordination [11], navigating fleets of vehicles
[28], guiding teams of UAVs [37] and swarm robotics [6],
to name only a few. As the scale and complexity of such
systems are continuously growing, a great requirement has
emerged for developing algorithmic frameworks that benefit
from a distributed structure, high computational efficiency,
low communication requirements, and therefore, scalability.
In addition, as uncertainty is an integral component of multi-
agent systems, associating such methods with safety guaran-
tees remains of paramount importance.

Most of the existing literature in multi-robot control, has
considered systems that range from a handful of units to
hundreds or thousands of agents. Some notable approaches can
be found in the fields of optimal control [24, 25, 32, 39], path
planning [8, 13, 26], swarm robotics [6, 21, 22, 30] and multi-
agent reinforcement learning [12, 14, 16, 38]. Nevertheless,
empirical demonstrations show that the scalability of most
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Fig. 1: A VLMAS with a hierarchical clustered structure of
L levels. Level L corresponds to individual robots and their
distributions (green). All robots are organized into level-(L−
1) cliques (orange) which are then also organized into level-
(L− 2) cliques and so on, up to level-1 cliques (blue).

methods from the previous classes is practically limited in
the order of a few thousands of robots.

This paper considers a class of systems, labeled as Very-
Large-Scale Multi-Agent Systems (VLMAS), that can scale
up to the order of millions of robots. To also account for
potential uncertainties in VLMAS, all agents are modeled with
stochastic dynamics. To our best knowledge, the literature for
addressing the control of such systems in a safe, distributed
and scalable manner while operating under uncertainty is very
scarce. The key insight of this work is that VLMAS often
admit a hierarchical clustered structure (Fig. 1) where robots
are arranged into cliques, which are then organized into greater
cliques etc. Such a structure is highly suitable for the proposed
direction of hierarchical distribution control.

Multi-robot control approaches that exploit such hierarchies
appear to be quite few in the literature. A multi-robot navi-
gation method that used hierarchical clustering to identify the
formation of groups of robots and guide them to their targets
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was proposed in [2]. Furthermore, a distributed algorithm for
the coordination of clusters of robots was recently presented
in [15]. While these works have hinted towards the potential
of distributed hierarchical control in robotics, their approaches
were still only applicable to small-scale multi-robot teams and
unrelated to the control of distributions.

As safety requirements in robotics and control are of great
significance, covariance steering (CS) theory has recently
emerged as a promising approach for guiding the state distri-
bution of a system to prescribed targets while providing prob-
abilistic safety guarantees [3, 4, 10, 20]. Successful robotics
applications can be found in trajectory optimization [5, 35],
path planning [23], flight control [7, 17, 27], multi-robot
systems [31, 33] and robotic manipulation [18], to name a
few. While the main barrier for applying CS methods for
multi-agent stochastic control was due to their significant
computational requirements, recent distributed optimization
based approaches [31, 33] have shown that CS is a viable
option for multi-agent systems. Nevertheless, the scalability of
the aforementioned methods appears to be practically limited
to systems with tens or hundreds of agents. In addition, to
our best knowledge, combining CS with the control of the
distributions of clusters of agents has not been considered yet
in the literature.

In this paper, we aspire to surpass the appearing limitations
of current CS approaches, by exploiting the fact that VLMAS
systems can be subject to a hierarchical clustered structure. In
such a multi-level hierarchical setup, the agents are organized
into cliques, which are then organized into greater cliques, and
so on. Our key insight lies in the fact that CS theory can also
be utilized for the control of such cliques in addition to the
control of individual agents. Based on this fact, we introduce
a novel distributed method for the control of VLMAS, named
Distributed Hierarchical Distribution Control (DHDC). The
DHDC framework consists of two separate sub-frameworks.
The first one, Distributed Hierarchical Distribution Estimation
(DHDE), associates all cliques with suitable Gaussian distribu-
tions that satisfy the hierarchical structure, while the second
one, Distributed Hierarchical Distribution Steering (DHDS),
utilizes CS to drive the distributions of all cliques and agents
towards their assigned targets. The specific contributions of
this work can be listed as follows:

1) We illustrate how covariance steering theory can be
fused with the control of clusters of agents that are
linked through a hierarchical structure.

2) We propose DHDE, a bottom-up hierarchical distributed
approach for estimating the optimal random distributions
to be associated with the cliques of each level of the
hierarchy.

3) We propose DHDS, a top-down hierarchical distributed
approach for steering the distributions of all cliques and
agents to their targets, by exploiting the information
acquired with DHDE.

4) We demonstrate the effectiveness and scalability of the
proposed approaches through simulation experiments on
systems with up to two million agents.

To our best knowledge, the proposed approach is one of
the few existing methods for the distributed and safe con-
trol of stochastic systems in the VLMAS scale. In addition,
DHDC greatly outperforms the scalability of all current CS
approaches for multi-agent control, and therefore, paves the
way for the application of CS theory to robotic systems of
a much larger scale. Furthermore, this work highlights the
potential of hierarchical distributed optimization methods that
utilize distribution characteristics for the control of large-scale
multi-agent systems.

II. PROBLEM STATEMENT

A. Notation

The set of n×n symmetric positive semi-definite (definite)
matrices is denoted with S+n (S++

n ). Given two matrices
A,B ∈ Rn×n, the matrix inequality A ⪰ B refers to
A − B ∈ S+n . Given a random variable (r.v.) x ∈ Rn, its
expectation and covariance are given by E[x] ∈ Rn and
COV[x] ∈ S+n , respectively. If a r.v. x ∈ Rn is such that
x ∼ N (µ,Σ), then x is subject to a multivariate Gaussian
distribution with mean µ = E[x] and covariance Σ = COV[x].
In addition, x ∈ Eθ[µ,Σ] implies that x ∈ Rn lies within the
θ-probability confidence ellipsoid of N (µ,Σ), i.e., Eθ[µ,Σ] :
(x−µ)TΣ−1(x−µ) ≤ α, where α = f−1

χ2,ν(θ) and f−1
χ2,ν(·) is

the inverse cumulative distribution function of the chi-square
distribution with ν degrees of freedom. The Kullback–Leibler
(KL) divergence of a probability distribution P from another
distribution Q is denoted with DKL(P∥Q). Furthermore, the
cardinality of a set A is given by |A|. Finally, Ja, bK denotes
the integer set [a, b] ∩ Z for any a, b ∈ R with a ≤ b.

B. Problem Formulation

Let us consider a VLMAS given by the set R =
{1, . . . ,M}, where M is the total number of agents. Each
agent i ∈ R is subject to the following homogeneous discrete-
time, stochastic, linear dynamics

xi,k+1 = Axi,k +Bui,k + wi,k, (1)

where xi,k ∈ Rnx and ui,k ∈ Rnu are the state and control
of the i-th agent at time k, wi,k ∈ Rnx is process noise such
that wi,k ∼ N (0,W ) with W ∈ S+nx

, and A ∈ Rnx×nx ,
B ∈ Rnx×nu . If we denote the time horizon with N , i.e., k ∈
J0, NK, then the full state, control and noise sequences of agent
i are given by xi = [xi,0; . . . ;xi,N ], ui = [ui,0; . . . ;ui,N−1]
and wi = [wi,0; . . . ;wi,N−1], respectively. All initial states
xi,0 are subject to xi,0 ∼ N (µi,0,Σi,0), where µi,0 ∈ Rnx

and Σi,0 ∈ S++
nx

are known.
Let us now introduce the VLMAS distribution control

problem. The main objective is to steer the distributions of
the terminal states xi,N of all agents to prescribed target
distributions N (µi,f ,Σi,f) with µi,f ∈ Rnx and Σi,f ∈ S++

nx
.

This can be achieved by enforcing the following constraints

E[xi,N ] = µi,f , (2)
COV[xi,N ] ⪯ Σi,f , (3)
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for every agent i ∈ R. Furthermore, the position of each agent
in space is given by pi,k = Hxi,k ∈ Rnp , with H ∈ Rnp×nx

defined accordingly. To simplify exposition, in this work, we
consider agents that operate on a 2D plane, i.e., np = 2.
Nevertheless, all proposed ideas are readily extendable for 3D
multi-robot systems. The following probabilistic inter-agent
collision avoidance constraints must also be satisfied between
all agents,

P (∥pi,k − pj,k∥2 ≥ dinter) ≥ θ, ∀i, j ∈ R, i ̸= j, (4)

for all k ∈ J0, NK, where dinter is the minimum allowed
distance between two agents and θ ∈ (0.5, 1). In addition,
we assume the existence of a set O = {1, . . . , O} of
circle obstacles and consider the following probabilistic safety
constraints

P (∥pi,k − po∥2 ≥ dobs + ro) ≥ θ, ∀i ∈ R, ∀o ∈ O, (5)

for all k ∈ J0, NK, where ro is the radius of obstacle o ∈ O
and dobs is the minimum allowed distance between an agent
and an obstacle. Finally, all agents also aim to minimize their
control effort through the following individual costs

Ji(ui) =

N−1∑
k=0

E[uT
i,kRui,k], i ∈ R. (6)

where R ∈ S++
n . Consequently, the VLMAS distribution

control problem can be formulated as follows.

Problem 1 (VLMAS Distribution Control Problem). Find the
optimal control input sequences u∗

i , ∀i ∈ R, such that

{u∗
i }i∈R = argmin

∑
i∈R

Ji(ui)

s.t. (1), (2), (3), (4), (5).

C. Hierarchical Clustered Structure

This work focuses on VLMAS that are subject to a known
hierarchical clustered structure (Fig. 1). This hierarchy con-
sists of L levels with each level denoted with ℓ ∈ {1, . . . , L}.
The bottom level ℓ = L corresponds to individual agents.
All agents are organized into level-(L − 1) cliques CL−1

i ∈
RL−1, which are then organized into level-(L − 2) cliques
CL−2
i ∈ RL−2, and so on, where Rℓ denotes the set of all

cliques in each level ℓ ∈ J1, LK. If by convention, we let the
level-L cliques CLi correspond to individual agents i ∈ R, i.e.,
RL ≡ R, then the aforementioned structure can be formally
stated as follows.

Assumption 1 (Hierarchical Clustered Structure). For all
levels ℓ ∈ J2, LK, it holds that for every clique Cℓi ∈ Rℓ,
there exists a clique Cℓ−1

a ∈ Rℓ−1 such that

Cℓi ⊆ Cℓ−1
a . (7)

In other words, every clique in level ℓ belongs to a “parent”
clique of level ℓ− 1. Furthermore, for all levels ℓ ∈ J1, LK, it
holds that

Cℓi ∩ Cℓj = ∅, ∀Cℓi , Cℓj ∈ Rℓ, i ̸= j, (8)

i.e., the intersection between cliques of the same level is always
the empty set.

Furthermore, to lighten the notation, given a clique Cℓi , we
consider the statements Cℓi ∈ A and i ∈ A to be equivalent
for any arbitrary set A. A direct consequence of Assumption
1 is the following.

Corollary 1. For all levels ℓ ∈ J2, LK, every clique Cℓi only
has one “parent” clique Cℓ−1

a .

Subsequently, we introduce the notion of neighbor cliques.
Given a clique Cℓi , the set of its neighbor cliques is defined
as n[Cℓi ]. Of course, if ℓ ∈ J2, LK, then all cliques Cℓj with
j ∈ n[Cℓi ] have the same “parent” clique as Cℓi , i.e., if Cℓi ⊆
Cℓ−1
a , then Cℓj ⊆ Cℓ−1

a , ∀j ∈ n[Cℓi ]. The set of cliques Cℓj that
include Cℓi as a neighbor clique is defined with m[Cℓi ], i.e., if
Cℓj is such that i ∈ n[Cℓj ], then j ∈ m[Cℓi ]. Note that it is not
required that n[Cℓi ] ≡ m[Cℓi ].

Next, all necessary communication assumptions are stated.
First, we formulate the basic communication capabilities of
every agent which are only limited in exchanging information
with their neighboring agents within the same level-(L − 1)
clique.

Assumption 2 (Basic Communication Capabilities). Every
agent i ∈ R (or just CLi ∈ R) is able to exchange information
with all agents j ∈ n[CLi ] ∪m[CLi ].

Note that compared to the potential scale of a VLMAS,
and assuming that neighbor sets would be relatively small,
this is considered to be a minor communication requirement.
In the following assumption, we establish how communication
between different cliques materializes, by assigning increased
communication capabilities to specific agents.

Assumption 3 (Increased Communication Capabilities). For
all levels ℓ ∈ J1, L − 1K, in each clique Cℓi , there exists
one agent with “level-ℓ communication capabilities”, or more
briefly a “level-ℓ agent”. Each level-ℓ agent is able to ex-
change information with:

• all level-(ℓ + 1) agents of the cliques Cℓ+1
n such that

Cℓ+1
n ⊆ Cℓi ,

• all level-ℓ agents that belong in n[Cℓi ] ∪m[Cℓi ].

D. Virtual States for Clique Dynamics

Finally, towards associating the control of the cliques of
levels 1, . . . , L − 1, with covariance steering, we define their
correspoding virtual states xℓ

i ∈ Rnx and controls uℓ
i ∈ Rnu ,

for all i ∈ Rℓ. Since the dynamics of all agents are homo-
geneous, the virtual states are modeled to follow the same
dynamics as the agents,

xℓ
i,k+1 = Axℓ

i,k +Buℓ
i,k + wℓ

i,k, (9)

where wℓ
i,k ∼ N (0,W ). Note that this is still far from asso-

ciating the control of cliques with covariance steering, since
the initial and target random distributions of the cliques of all
levels ℓ ∈ J1, L − 1K are not available and require rigorous
selection such that the hierarchical structure is satisfied. In
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Fig. 2: The DHDC framework consists of two parts. The first part (DHDE) is a bottom-up approach that estimates the initial and
target random distributions that correspond to all cliques of levels ℓ ∈ J1, L− 1K, such that the assumed hierarchical clustered
structure is satisfied. The second part (DHDS) is a top-down approach that steers the distributions of the cliques/agents of all
levels based on the initial and target distributions provided by DHDE.

the next section, we propose an approach for estimating these
initial and target random distributions as Gaussian distributions
N (µℓ

i,0,Σ
ℓ
i,0) and N (µℓ

i,f ,Σ
ℓ
i,f), ∀i ∈ Rℓ, ℓ ∈ J1, L− 1K.

III. DISTRIBUTED HIERARCHICAL DISTRIBUTION
ESTIMATION

This section focuses on the problem of finding the optimal
Gaussian distributions for representing the initial and target
state configurations of the cliques Cℓi , ∀Rℓ, ℓ ∈ J1, L − 1K,
based on the known level-L distributions. We label this prob-
lem as the inter-level distribution estimation problem. Towards
addressing it, we propose Distributed Hierarchical Distribution
Estimation (DHDE), a hierarchical distributed approach that
operates in a bottom-up fashion (Fig. 2) for estimating the
desired random distributions.

A. Single-Clique Distribution Estimation

To facilitate the exposition of our ideas, we first consider the
simplified subproblem of single-clique distribution estimation,
where the objective is to estimate the Gaussian distribution
that best describes a clique Cℓi , i.e., best captures the random
state distributions of all cliques Cℓ+1

n ⊆ Cℓi with a single
Gaussian distribution, without considering potential overlaps
in the 2D space between neighboring cliques. Furthermore,
note that the distribution estimation problem has the same
form, either we refer to the initial or target configurations,
thus we make no distinction between the two and drop the
corresponding notation.

In order to find the optimal distribution N ℓ
i = N (µℓ

i ,Σ
ℓ
i)

for capturing all the distributions N ℓ+1
n = N (µℓ+1

n ,Σℓ+1
n )

of the cliques Cℓ+1
n such that Cℓ+1

n ⊆ Cℓi , we select the KL
divergence metric DKL(N ℓ+1

n ∥N ℓ
i ) to measure discrepancies

between distributions. In addition, by defining the parts of
the means and covariances that correspond to the position
coordinates as µ̄i = Hµi and Σ̄i = HΣiH

T, we impose
the constraints

Eθ[µ̄ℓ+1
n , Σ̄ℓ+1

n ] ⊆ Eθ[µ̄ℓ
i , Σ̄

ℓ
i ], n ∈ Cℓi , (10)

so that the assumed hierarchical clustered structure is indeed
satisfied. Therefore, the single-clique distribution estimation
problem can be stated for a particular clique Cℓi ∈ Rℓ of a
given level ℓ ∈ J1, L− 1K, as follows.

Problem 2 (Single-Clique Distribution Estimation Problem).
Find the optimal Gaussian distribution N (µℓ

i ,Σ
ℓ
i) such that{

µℓ
i ,Σ

ℓ
i

}
= argmin Je

i (µ
ℓ
i ,Σ

ℓ
i) (11a)

s.t. Eθ[µ̄ℓ+1
n , Σ̄ℓ+1

n ] ⊆ Eθ[µ̄ℓ
i , Σ̄

ℓ
i ], n ∈ Cℓi , (11b)

Σℓ
i ≻ 0, (11c)

where
Je
i =

∑
n∈Cℓi

DKL(N ℓ+1
n ∥N ℓ

i ). (12)

In the following proposition, we present a tractable opti-
mization problem whose optimal solution provides the optimal
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solution of Problem 2. From now on, the level superscripts will
be omitted unless not obvious from the context.

Proposition 1. Let us introduce the auxiliary optimization
variables Qi = Σ−1

i , qi = Σ−1
i µi and τn ∈ R, ∀n ∈ Cℓi .

The optimal solution of Problem 2 is obtained by solving the
following convex optimization problem

min Ĵe
i (Qi, qi) (13a)

s.t Sn(Q̄i, q̄i, τn) ⪰ 0, n ∈ Cℓi , (13b)

τn ≥ 0, n ∈ Cℓi , (13c)
Qi ≻ 0, (13d)

w.r.t. Qi, qi and {τn}n∈Cℓi , where

Ĵe
i (Qi, qi) =

∑
n∈Cℓi

− log |Qi|+ tr(QiΣn) + qTi Q
−1
i qi

− 2µT
nqi + µT

nQiµn, (14a)

Sn =

S11 S12 0
ST
12 S22 S23

0T ST
23 S33

 , (14b)

S11 = −Q̄i + τnΣ̄
−1
n , S12 = q̄i − τnΣ̄

−1
n µ̄n, (14c)

S22 = α+ τnµ̄
T
n Σ̄

−1
n µ̄n − ατn, S23 = q̄Ti , S33 = Q̄i,

Q̄i = HQiH
T, q̄i = Hqi, α = f−1

χ2,2(θ), (14d)

and setting µi = Q−1
i qi and Σi = Q−1

i .

Proof: The proof is provided in Section VII-A of the
Supplementary Material (SM).

B. Multi-Clique Distribution Estimation

Let us now consider an extended version of the previous
problem, labeled as the multi-clique distribution estimation
one, where the objective is to simultaneously estimate the
Gaussian distributions N ℓ

i of all cliques Cℓi such that Cℓi ⊆
Cℓ−1
a , i.e., all cliques that belong in the same parent clique
Cℓ−1
a (or just R1 if ℓ = 1). In this case, it is also necessary

to ensure that the θ-probability confidence ellipses Eθ[µ̄ℓ
i , Σ̄

ℓ
i ]

of neighboring cliques will not overlap with each other, i.e.,
we also impose the following constraints

Eθ[µ̄ℓ
i , Σ̄

ℓ
i ] ∩ Eθ[µ̄ℓ

j , Σ̄
ℓ
j ] = ∅, j ∈ n[Cℓi ], (15)

between neighbor cliques of the same parent clique. Hence, the
multi-clique distribution estimation problem can be formulated
as follows.

Problem 3 (Multi-Clique Distribution Estimation Problem).
Given a parent clique Cℓ−1

a (or R1 if ℓ = 1), find the optimal
Gaussian distributions N

(
µℓ
i ,Σ

ℓ
i

)
for all i ∈ Cℓ−1

a , such that

{
µℓ
i ,Σ

ℓ
i

}
i∈Cℓ−1

a
= argmin

∑
i∈Cℓ−1

a

Je
i (µ

ℓ
i ,Σ

ℓ
i) (16a)

s.t. Eθ[µ̄ℓ+1
n , Σ̄ℓ+1

n ] ⊆ Eθ[µ̄ℓ
i , Σ̄

ℓ
i ], n ∈ Cℓi , (16b)

Eθ[µ̄ℓ
i , Σ̄

ℓ
i ] ∩ Eθ[µ̄ℓ

j , Σ̄
ℓ
j ] = ∅, j ∈ n[Cℓi ], (16c)

Σℓ
i ≻ 0, i ∈ Cℓ−1

a , (16d)

where Je
i (µ

ℓ
i ,Σ

ℓ
i) is the same as in Problem 2.

In the following proposition, we present an optimization
problem whose optimal solution provides a suboptimal solu-
tion for Problem 3.

Proposition 2. Let us introduce the auxiliary optimization
variables Qi = Σ−1

i , qi = Σ−1
i µi, ϕi ∈ R and τi,n ∈ R,

∀n ∈ Cℓi , ∀i ∈ Cℓ−1
a . A suboptimal solution for Problem 3 is

obtained by solving the following optimization problem

min
∑

i∈Cℓ−1
a

Ĵe
i (Qi, qi) (17a)

s.t Si,n(Q̄i, q̄i, τi,n) ⪰ 0, n ∈ Cℓi , (17b)

τi,n ≥ 0, n ∈ Cℓi , (17c)

hi,j(Q̄i, q̄i, ϕi, Q̄j , q̄j , ϕj) ≤ 0, j ∈ n[Cℓi ], (17d)
Ti(Q̄i, ϕi) ⪰ 0, (17e)

Qi ≻ 0, i ∈ Cℓ−1
a , (17f)

w.r.t. Qi, qi, {τn}n∈Cℓi and ϕi, ∀i ∈ Cℓ−1
a , where

hi,j = ri(ϕi) + rj(ϕj)−
∥∥Q̄−1

i q̄i − Q̄−1
j q̄j

∥∥
2
, (18a)

ri = ϕ
−1/2
i , Ti = Q̄i − ϕiαI, (18b)

Ĵe
i , Si,n, Q̄i and q̄i are as in Proposition 1, and setting µi =

Q−1
i qi and Σi = Q−1

i for every i ∈ Cℓ−1
a .

Proof: Provided in Section VII-B of the SM.

Remark 1. The optimal solution of the problem in Proposition
2 might be suboptimal - but always feasible - for Problem 3,
in the sense that the constraints (17d) and (17c) formulate a
“tighter” version of (16c), as shown in Section VII-B.

Note that the cost and all constraints in (17) are convex
except for (17d). As explained in the next section, we address
that through iterative linearization of the constraint.

C. Distributed Hierarchical Distribution Estimation

Let us now formulate the full inter-level distribution esti-
mation problem, whose objective is to estimate the optimal
distributions N (µℓ

i ,Σ
ℓ
i) of all cliques Cℓi ∈ Rℓ of all levels

ℓ ∈ J1, L − 1K. Of course, this problem will consist of many
interconnected instances of Problem 3. In fact, the inter-level
distribution estimation problem can be formulated as follows.

Problem 4 (Inter-Level Distribution Estimation Problem). For
all ℓ ∈ J1, L−1K and for all a ∈ Rℓ−1 (if ℓ ≥ 2) , find the sets
of optimal Gaussian distributions {N

(
µℓ
i ,Σ

ℓ
i

)
}, i ∈ Cℓ−1

a ,
that solve each corresponding Problem 3.
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Algorithm 1 DHDE Algorithm

1: Inputs: HIER STRUCTURE, µL
i ,Σ

L
i ,∀i ∈ R, θ

2: for ℓ = L− 1 : −1 : 1 do
3: if ℓ > 1 then
4: A← Rℓ−1

5: else
6: A← {1}
7: for a ∈ A do (in parallel)
8: for i ∈ Cℓ−1

a do (in parallel)
9: All n ∈ Cℓi send µℓ+1

n ,Σℓ+1
n to i.

10: while TERM CRITERION == False do
11: for i ∈ Cℓ−1

a do (in parallel)
12: {Q̃i, q̃i, ϕ̃i} ← Solve (21).
13: All j ∈ m[Cℓi ] send {Qj

i , q
j
i , ϕ

j
i} to i.

14: for i ∈ Cℓ−1
a do (in parallel)

15: {Gi, gi, zi} ← Update with (23).
16: All j ∈ n[Cℓi ] send {Gj , gj , zj} to i.
17: for i ∈ Cℓ−1

a do (in parallel)
18: {Ξi, ξi, yi} ← Update with (24).
19: for i ∈ Cℓ−1

a do (in parallel)
20: {µℓ

i ,Σ
ℓ
i} ← Compute based on Qi, qi.

The goal of the proposed Distributed Hierarchical Distri-
bution Estimation (DHDE) framework is to solve Problem
4 using a bottom-up strategy, since the only a priori known
distributions are the level-L ones. In this direction, we propose
first solving all instances of Problem 3 in Level L − 1, then
based on the acquired information, i.e. all NL−1

i , solve all
instances of Problem 3 in Level L−2, to obtain all NL−2

i , and
so on. Of course, based on the results of Section III-B, we also
replace all these instances of Problem 3 with the Proposition
2 problems. Finally, to further distribute computations, we
propose solving each such problem in a distributed manner
using an approach based on the Alternating Direction Method
of Multipliers (ADMM) [9].

In order to solve problem (17) in a distributed fashion, we
first need to address the coupling induced by the constraints
(17d) between neighboring cliques. Hence, we define the copy
variables Qi

j , qij and ϕi
j , for all j ∈ n[Cℓi ], and subsequently

the augmented variables

Q̃i =
[
Qi; {Qi

j}j∈n[Cℓi ]
]
, (19a)

q̃i =
[
qi; {qij}j∈n[Cℓi ]

]
, (19b)

ϕ̃i =
[
ϕi; {ϕi

j}j∈n[Cℓi ]
]
. (19c)

Note that the addition of the copy variables might have
created multiple variables for each agent. To accommodate
for that, we also define the global variables G = [{Gi}i∈Cℓ−1

a
],

g = [{gi}i∈Cℓ−1
a

], z = [{zi}i∈Cℓ−1
a

], and impose the consensus
constraints

Q̃i = G̃i, q̃i = g̃i, ϕ̃i = z̃i, (20)

where G̃i = [Gi; {Gj}j∈n[Cℓi ]], g̃i = [gi; {gj}j∈n[Cℓi ]] and z̃i =
[zi; {zj}j∈n[Cℓi ]].

Next, we present the algorithm updates; for a full derivation,
the reader is referred to Section VII-C of the SM. First, each
level-ℓ agent i updates its local variables Q̃i, q̃i and ϕ̃i by
solving the optimization problem

{Q̃i, q̃i, ϕ̃i} = argmin J̃e
i (Q̃i, q̃i, ϕ̃i) (21a)

s.t Si,n(Qi, qi, τi,n) ⪰ 0, n ∈ Cℓi , (21b)

τi,n ≥ 0, n ∈ Cℓi , (21c)

h̄i,j(Qi, qi, ϕi, Q
i
j , q

i
j , ϕ

i
j) ≤ 0, j ∈ n[Cℓi ], (21d)

Ti(Qi, ϕi) ⪰ 0, (21e)
Qi ≻ 0 (21f)

where the augmented costs J̃e
i (Q̃i, q̃i, ϕ̃i) are given by

J̃e
i = Ĵe

i (Qi, qi) + tr(ΞT
i (Q̃i − G̃i)) + ξTi (q̃i − g̃i)

+ yTi (ϕ̃i − z̃i) +
ρQ
2
∥Q̃i − G̃i∥2F +

ρq
2
∥q̃i − g̃i∥22

+
ρϕ
2
∥ϕ̃i − z̃i∥22, (22)

with ρQ, ρq, ρϕ > 0 being penalty parameters and Ξi, ξi, yi
being the dual variables of the corresponding constraints. In
addition, we take advantage of the iterative nature of ADMM
and replace hi,j(·) in (21d) with its linear approximation
h̄i,j(·) to convexify problem (21). For more details, the reader
is referred to Section VII-D of the SM.

Subsequently, the components of the global variables are
updated locally by each level-ℓ agent as follows,

Gi ←
1

|m′[Cℓi ]|
∑

j∈m′[Cℓi ]

Qj
i (23)

where m′[Cℓi ] = m[Cℓi ] ∪ {i}. The updates for gi and zi have
the same form as (23) if we replace Qj

i with qji and ϕj
i ,

respectively. Finally, the dual variables are updated with

Ξi ← Ξi + ρQ(Q̃i − G̃i) (24a)
ξi ← ξi + ρq(q̃i − g̃i) (24b)

yi ← yi + ρϕ(ϕ̃i − z̃i). (24c)

Note that all updates in (21), (23), (24) can be performed in
parallel by each level-ℓ agent i. Therefore, all computations
take place in a decentralized manner.

The DHDE algorithm with all necessary computation and
communication steps is illustrated in Alg. 1. The method
operates in a bottom-up fashion for ℓ = {L−1, L−2, . . . , 1}.
For a particular level ℓ, the first step is that all agents n
such that Cℓ+1

n ⊆ Cℓi send µℓ+1
n ,Σℓ+1

n to the level-ℓ agent
i that corresponds to the clique Cℓi (Line 9). Then the iterative
ADMM procedure starts for every different group of agents
that corresponds to a clique Cℓ−1

a (Lines 10-18). Note that
these procedures can of course take place in parallel. Focusing
into a particular group of agents that belong in clique Cℓ−1

a , the
ADMM updates are performed as follows. First, each agent
i ∈ Cℓ−1

a solves (21) to update its local variables {Q̃i, q̃i, ϕ̃i}
(Line 12). Subsequently, each i receives the copy variables
{Qj

i , q
j
i , ϕ

j
i} from all j ∈ m[Cℓi ] (Line 13). As a result, each
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agent i can now obtain the new iterates for {Gi, gi, zi} (Line
15) through updates of the form (23). Afterwards, all agents
j ∈ n[Cℓi ] send the variables {Gj , gj , zj} to each i (Line
16) so that each agent i updates its dual variables {Ξi, ξi, yi}
(Line 18) with (24). Once a predefined termination criterion
is satisfied, each agent i computes the variables µℓ

i and Σℓ
i

(Line 20). Now that the estimates µℓ
i ,Σ

ℓ
i have been found for

all ℓ ∈ Rℓ, this procedure repeats for the above level ℓ − 1,
and so on, until level 1 is reached.

IV. DISTRIBUTED HIERARCHICAL DISTRIBUTION
STEERING

After associating all cliques of all levels with their initial
and target Gaussian distributions, we proceed with addressing
the problem of steering all state distributions from the initial
to the target ones. We label this problem as the inter-level
distribution steering one. To solve this problem, we propose
a top-down hierarchical distributed method (Fig. 2) called
Distributed Hierarchical Distribution Steering (DHDS).

A. Multi-Clique Distribution Steering

Before formulating the inter-level problem, let us again first
state a subproblem that serves as the basic component of
the full problem. In particular, we consider the multi-clique
distribution steering problem whose objective is to steer the
Gaussian distributions of (the virtual states of) all i such that
the cliques Cℓi ⊆ Cℓ−1

a , for a specific parent clique Cℓ−1
a and

level ℓ. Of course, in the case where ℓ = 1, we consider R1 as
the parent clique. Thus, the multi-clique distribution steering
problem can be formulated as follows.

Problem 5 (Multi-Clique Distribution Steering Problem).
Given a parent clique Cℓ−1

a (or R1 if ℓ = 1), find the optimal
control sequences uℓ

i for all i ∈ Cℓ−1
a , such that{

uℓ
i

}
i∈Cℓ−1

a
= argmin

∑
i∈Cℓ−1

a

J s
i (u

ℓ
i) (25a)

s.t. xℓ
i,k+1 = Axℓ

i,k +Buℓ
i,k + wℓ

i,k, (25b)

E[xℓ
i,N ] = µℓ

i,f , COV[xℓ
i,N ] ⪯ Σℓ

i,f , (25c)

qℓi,j,k(p
ℓ
i,k, p

ℓ
j,k) ≥ 0, j ∈ n[Cℓi ], (25d)

sℓi,k(p
ℓ
i,k) ≥ 0, (25e)

Eθ[µ̄ℓ
i,k, Σ̄

ℓ
i,k] ⊆ Eθ[µ̄ℓ−1

a,k , Σ̄ℓ−1
a,k ], (25f)

k ∈ J0, NK, i ∈ Cℓ−1
a ,

where

J s
i (u

ℓ
i) =

N−1∑
k=0

E[uℓ T
i,k Ruℓ

i,k], (26a)

qℓi,j,k(p
ℓ
i,k, p

ℓ
j,k) = P

(
∥pℓi,k − pℓj,k∥2 ≥ dℓinter

)
− θ, (26b)

sℓi,k(p
ℓ
i,k) = P

(
∥pℓi,k − po∥2 ≥ dℓobs + ro

)
− θ. (26c)

and dℓinter, d
ℓ
obs are prespecified parameters.

In the following, we will be omitting level superscripts,
unless not clear by the context.

B. Problem Transformation

In order to address Problem 5, we consider the affine
disturbance feedback control policies proposed in [4], with

ui,k = ūi,k + Li,k(xi,0 − µi,0) +

k−1∑
κ=0

Ki,(k−1,κ)wi,κ, (27)

where ūi,k ∈ Rnu are the feed-forward control terms and
Li,k, Ki,(k−1,κ) ∈ Rnu×nx are feedback gain matrices. After
concentrating these variables for the entire time horizon, we
obtain the decision variables ūi ∈ RNnu , Li ∈ RNnu×nx

and Ki ∈ RNnu×Nnx , with their exact forms provided in
Section VIII-A of the SM. Thus, the control sequences ui can
be rewritten as

ui = ūi + Li(xi,0 − µi,0) +Kiwi. (28)

If we also write the dynamics (9) in their concatenated form,

xi = Ψ0xi,0 +Ψuui +Ψwwi, (29)

where the matrices Ψ0, Ψu and Ψw are provided in the SM,
then through (28), we obtain

xi = Ψ0xi,0 +Ψuūi +ΨuLi(xi,0 − µi,0)

+ (Ψw +ΨuKi)wi. (30)

Therefore, given that affine transformations preserve Gaussian-
ity, the entire state sequence xi is a Gaussian vector, which
implies that xi,k ∼ N (µi,k,Σi,k), with

µi,k = fi,k(ūi), Σi,k = Fi,k(Li,Ki), (31)

where the exact expressions for fi,k(ūi) and Fi,k(Li,Ki) are
provided in the SM. Note that the mean states only depend
on the feed-forward controls, while the state covariances only
depend on the feedback matrices. This is a useful fact that we
will later exploit to further increase computational efficiency.

In the following proposition, we present an new optimiza-
tion problem whose optimal solution provides a suboptimal
one for Problem 5.

Proposition 3. A suboptimal solution for Problem 5 is
obtained by solving the following optimization problem. In
particular, given a parent clique Cℓ−1

a (or R1 if ℓ = 1), find
the optimal decision variables ūi, Li,Ki for all i ∈ Cℓ−1

a ,
such that{

ūi,Li,Ki

}
i∈Cℓ−1

a
= argmin

∑
i∈Cℓ−1

a

Ĵ s
i (ūi, Li,Ki) (32a)

s.t. fi,N (ūi) = 0, Fi,N (Li,Ki) ⪰ 0, (32b)

Qi,k(Li,Ki) ⪰ 0, si,k(ūi) ≥ 0, (32c)

qi,j,k(ūi, ūj) ≥ 0, j ∈ n[Cℓi ], (32d)

pi,k(ūi) ≤ 0, k ∈ J0, NK, i ∈ Cℓ−1
a , (32e)
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with

Ĵ s
i = ūT

i R̄ūi + tr(R̄KiWKT
i + R̄LiΣi,0L

T
i ), (33a)

fi,N (ūi) = µi,f − fi,N (ūi), (33b)

Fi,N (Li,Ki) =

[
Σi,f Φi,N (Li,Ki)

Φi,N (Li,Ki)
T I

]
, (33c)

Qi,k(Li,Ki) =

[ (
rℓ√
α

)2
I HΦi,k(Li,Ki)

Φi,k(Li,Ki)
THT I

]
,

(33d)

si,k(ūi, ūj) = ∥f̄i,k(ūi)− po∥2 − rℓ − ro − dℓobs, (33e)

p(ūi) = ∥f̄i,k(ūi)− µ̄ℓ−1
a,k ∥P̂ − 1 ≤ 0, (33f)

qi,j,k(ūi, ūj) = ∥f̄i,k(ūi)− f̄i,k(ūj)∥2 − 2rℓ − dℓinter, (33g)

where R̄ = blkdiag(R, . . . ,R) ∈ S++
n f̄i,k = Hfi,k, rℓ is a

prespecified parameter and Φi,k(Li,Ki) is an affine function
of Li,Ki, provided in Section VIII-B of the SM. The matrix
P̂ = 1

αU Λ̂−1UT, where

Λ̂ =

(
Λ1/2 − r√

α
I

)2

, (34)

with [Λ, U ] being the eigendecomposition of the matrix Σ̄ℓ−1
a,k .

Proof: Provided in Section VIII-B of the SM.

Remark 2. The optimal solution of the problem in Proposition
3 might be suboptimal - but always feasible - for Problem 5,
since the constraints (32c)-(32d) provide a “tighter” version
of (25d)-(25e), as shown in Section VIII-B.

Remark 3. A major advantage of the problem presented in
Proposition 3, is that it is separable w.r.t. the feed-forward
control variables ūi and the feedback matrices Li,Ki. In
addition, an inter-agent coupling only appears through the
variables ūi - because of (32d) - and not through Li,Ki. As
shown in the next section, these two facts can be exploited to
significantly increase computational efficiency.

C. Distributed Hierarchical Distribution Steering

Let us now introduce the full inter-level distribution steering
problem, where the objective lies in finding the optimal control
sequences that will steer the state distributions of all cliques
Cℓi ∈ Rℓ of all levels ℓ ∈ J1, LK from the initial distributions
N (µℓ

i,0,Σ
ℓ
i,0) to the target ones N (µℓ

i,f ,Σ
ℓ
i,f). Being in sym-

metry with its estimation counterpart, this problem will consist
of many interconnected instances of Problem 5. Indeed, the
inter-level distribution steering problem is stated as follows.

Problem 6 (Inter-Level Distribution Steering Problem). For
all ℓ ∈ J1, LK and for all a ∈ Rℓ−1 (where by convention
R0 = {1}), find the optimal control policies {ui}, i ∈ Cℓ−1

a ,
that solve each corresponding Problem 5.

Remark 4. The combination of Problems 4 and 6 yields a
relaxed form of Problem 1, that is substantially more compu-
tationally tractable as the VLMAS dimensionality increases.

Algorithm 2 DHDS Algorithm

1: Inputs: HIER STRUCTURE, A,B,W , µℓ
i,0,Σ

ℓ
i,0, µ

ℓ
i,f ,Σ

ℓ
i,f

∀i ∈ Rℓ, dℓobs, d
ℓ
inter, r

ℓ, ∀ℓ ∈ J1, LK, θ
2: for ℓ = 1 : L do
3: if ℓ > 1 then
4: A← Rℓ−1

5: else
6: A← {1}
7: for a ∈ A do (in parallel)
8: if ℓ > 1 then
9: Each a ∈ Rℓ−1 sends µℓ−1

a,k ,Σℓ−1
a,k , k ∈ J0, NK

. to all i ∈ Cℓ−1
a .

10: while TERM CRITERION == False do
11: for i ∈ Cℓ−1

a do (in parallel)
12: ũi ← Solve (36).
13: All j ∈ m[Cℓi ] send ūi

j to each i.

14: for i ∈ Cℓ−1
a do (in parallel)

15: bi ← Update with (38).
16: All j ∈ n[Cℓi ] send bj to each i.
17: for i ∈ Cℓ−1

a do (in parallel)
18: vi ← Update with (39).
19: for i ∈ Cℓ−1

a do (in parallel)
20: {Li,Ki} ← Solve (41).
21: µℓ

i,k,Σ
ℓ
i,k ← Get with (31) for all k ∈ J0, NK.

In contrast with DHDE, the aim of DHDS is to solve
Problem 6 with a top-down procedure, since every level-ℓ
subproblem depends on a level-(ℓ−1) subproblem. Therefore,
we intend to first solve all instances of Problem 5 in Level 1,
then based on the acquired distributions N (µ1

i,k,Σ
1
i,k), solve

all instances of Problem 5 in Level 2, and so on, until Level
L is reached. After replacing all instances of Problem 5 with
the problem proposed in Proposition 3, we propose again
an ADMM-based approach to solve each such problem in a
distributed manner.

Note that as emphasized in Remark 3, we can separate
solving (32) into a part that would only involve the variables
ūi, i ∈ Cℓ−1

a and a second part including only the variables
Li,Ki, i ∈ Cℓ−1

a . Let us start with addressing the former part,
which can be formulated as

{ūi}i∈Cℓ−1
a

= argmin
∑

i∈Cℓ−1
a

Ĵ s
i,1(ūi) (35a)

s.t. fi,N (ūi) = 0, si,k(ūi) ≥ 0, pi,k(ūi) ≤ 0, (35b)

qi,j,k(ūi, ūj) ≥ 0, j ∈ n[Cℓi ], (35c)

k ∈ J0, NK, i ∈ Cℓ−1
a .

where Ĵ s
i,1(ūi) = ūT

i R̄ūi. To solve this problem in a dis-
tributed manner, we first need to introduce the augmented local
variables ũi = [ūi; {ūi

j}j∈n[Cℓi ]
]
, where ūi

j are copy variables
for all j ∈ n[Cℓi ]. As in DHDE, we also need to introduce a
global variable b = [{bi}i∈Cℓ−1

a
] and the constraints ũi = b̃i,
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Fig. 3: A two-level small-scale scenario. In (a), the 99.7%-confidence ellipses of the initial distributions are shown. Each
level corresponds to a specific color (1: blue, 2: red). Similarly, (b) shows the target distributions for the two levels. In (c)-(h),
the steering of all distributions is demonstrated for time instants k = 0, 20, 40, 80, 80, 100, respectively. At each snapshot,
the current, initial and target distributions are shown with solid, dotted and dashed ellipses, respectively. Here, each color
corresponds to a specific level-1 clique.

where b̃i = [bi; {bj}j∈n[Cℓi ]]. Subsequently, we can arrive to
a distributed ADMM algorithm for solving (35). For the full
derivation and additional implementation details, the reader is
referred to Sections VIII-C and VIII-D of the SM.

The updates of the resulting algorithm are presented below.
First, each level-ℓ agent updates its local variable ũi by solving
the following local optimization problem

ũi = argmin J̃ s
i,1(ūi) (36a)

s.t. fi,N (ūi) = 0, si,k(ūi) ≥ 0, pi,k(ūi) ≤ 0, (36b)

qi,j,k(ūi, ū
i
j) ≥ 0, j ∈ n[Cℓi ], k ∈ J0, NK. (36c)

with each cost J̃ s
i,1(ũi) given by

J̃ s
i,1(ũi) = Ĵ s

i,1(ūi) + vTi (ũi − b̃i) +
ρu
2
∥ũi − b̃i∥22. (37)

where ρu > 0 and vi are the dual variables corresponding
to the constraints ũi = b̃i. Subsequently, all global variables
components are updated with

bi ←
1

|m′[Cℓi ]|
∑

j∈m′[Cℓi ]

ūj
i (38)

and, finally, the dual updates are given by

vi ← vi + ρu(ũi − b̃i). (39)

Again, all updates in (36), (38) and (39) can be performed in
parallel by each level-ℓ agent i. Therefore, all computations
are operated in a decentralized fashion. This iterative algorithm
repeats until a prespecified termination criterion is met.

Let us now focus on the part of problem (32) that only
involves the variables Li,Ki. This subproblem can be formu-
lated as {

Li,Ki

}
i∈Cℓ−1

a
= argmin

∑
i∈Cℓ−1

a

Ĵ s
i,2(Li,Ki) (40a)

s.t. Fi,N (Li,Ki) ⪰ 0, Qi,k(Li,Ki) ⪰ 0, (40b)

k ∈ J0, NK, i ∈ Cℓ−1
a ,

where Ĵ s
i,2(ūi) = tr(R̄KiWKT

i + R̄LiΣi,0L
T
i ). A key ob-

servation here is that there exists no inter-agent coupling
between the optimization variables of different agents, so we
can further split the problem and independently solve each
agent’s problem as follows

{Li,Ki} = argmin Ĵ s
i,2(Li,Ki) (41)

s.t. Fi,N (Li,Ki) ⪰ 0, Qi,k(Li,Ki) ⪰ 0, k ∈ J0, NK.

for each i ∈ Cℓ−1
a .

The DHDS algorithm with all required computation and
communication steps is demonstrated in Alg. 2. The algorithm
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is executed in a top-down manner for ℓ = {1, . . . , L}. For
a specific level ℓ, each agent a that correspond to a parent
clique Cℓ−1

a ∈ Rℓ−1 (if ℓ > 1) must send the variables
µℓ−1
a,k ,Σℓ−1

a,k , k ∈ J0, NK, to all agents i ∈ Cℓ−1
a (Line 9).

Afterwards, the iterative ADMM algorithm starts for every
separate group of agents that corresponds to a particular clique
Cℓ−1
a (Lines 10-18). First, each agent i ∈ Cℓ−1

a solves its local
subproblem (36) to update its local variable ũi (Line 12).
Then, each agent i receives the copy variables ūj

i from all
j ∈ m[Cℓi ] (Line 13), so that the variables bi are updated (Line
15) through (38). Subsequently, all agents j ∈ n[Cℓi ] send bj to
each i (Line 16) and each agent i updates its dual variable vi
(Line 18) with (39). This iterative procedure terminates once
a predefined termination criterion is met. Finally, each agent
i ∈ Cℓ−1

a also computes its optimal feedback gains {Li,Ki}
(Line 20) through solving (41). After the optimal variables
{ūi, Li,Ki} have been found for all i ∈ Cℓ−1

a , then the state
means and covariances µℓ

i,k,Σ
ℓ
i,k can be obtained (Line 21)

through (31). Subsequently, the same procedure repeats for
the next level ℓ+ 1, and so on, until level L is reached.

V. SIMULATION RESULTS

This section provides simulation experiments that verify the
effectiveness and scalability of the proposed DHDC frame-
work. In Section V-A, we consider a two-level small-scale
system to facilitate the exposition of how DHDE and DHDS
operate. A larger three-level system of agents is then used in
Section V-B to further illustrate how the two proposed sub-
frameworks work. Subsequently, in Section V-C, we showcase
the applicability of DHDC on a six-level VLMAS of two
million robots. Finally, we compare the proposed approach
against other CS methods in Section V-D, and illustrate its
superior computational efficiency and safety performance. The
reader is encouraged to also refer to the supplementary video1

for a full illustration of the results.

A. Small-Scale Scenario

It this task, we consider a two-level small-scale hierarchy
with 5 cliques of 4 agents, thus a total of 20 agents (Fig. 3). All
agents are modeled with 2D double integrator dynamics. The
time horizon of the task is N = 100. For additional details on
the dynamics and algorithmic parameters, the reader is referred
to Section IX of the SM. The 99.7%-confidence ellipses of the
initial Gaussian distributions of the robots are shown in Fig.
3a with red color. The level-1 distributions that are computed
with DHDE also shown with blue color. As expected, the
confidence ellipses of the assigned distributions for the level-1
cliques encompass the ones of the distributions of the robots
(level 2). Similarly, the target distributions of all levels are
illustrated in Fig. 3b.

The goal of all agents is to reach to a target distribution
that is in diametrically opposite position to their initial one,
while of course avoiding collisions with the rest of the agents.
Figures 3c-3h show snapshots of the motion of all distributions

1https://youtu.be/0QPyR4bD2q0

for time instants k = 0, 20, 30, 40, 50, 60, 70, 100, respectively.
As illustrated, DHDS is able to successfully steer all the
level-1 distributions to the targets provided by DHDE. In the
meantime, the distributions of all agents are also steered to
their targets while satisfying the constraint that forces their
distributions to lie within their parent clique distributions.
Thanks to the fact that the solution of the level-1 problems
guarantees that the agents of one clique will not collide with
the ones of other cliques, the level-2 subproblems only take
into account collision avoidance constraints with agents form
the same clique. In Fig. 3h, all level-1 and level-2 distributions
have successfully reached to their targets.

B. Large-Scale Scenario

Next, a larger scale 3-level system of 2 × 8 × 9 = 144
agents (Fig. 4) is used to further exhibit the effectiveness
of the proposed method. First, we focus on illustrating the
performance of the DHDE sub-framework. Figure 4a shows
the initial and target distributions of the robots (level 3) and
the ones corresponding to the level-2 cliques that are obtained
through DHDE. In Fig. 4b, the level-1 distributions are shown,
while Fig. 4c shows the results DHDE would provide if the
inter-clique constraints (16c) had been omitted. This highlights
the importance of including these constraints and of using the
advanced Problem 3 formulation in our setup instead of the
more simplistic Problem 2 one.

The performance of the DHDS algorithm is then demon-
strated in Figs. 4d-4i. In particular, the motion of the distri-
butions of all levels is shown in Figs. 4d-4f as they are being
steered towards their target while avoiding the obstacles in the
middle. In Figs. 4g-4i, we focus into the black dotted box of
the previous plots to further emphasize on the motion of the
robots (level 3). As shown, the distributions of the robots are
steered while staying within the distributions of their parent
cliques and not overlapping with each other.

C. VLMAS Scenario

Subsequently, we consider a VLMAS with a 6-level hierar-
chical clustered structure, where the first level has 2 cliques,
each clique in levels 2, . . . , 4 contains 16 sub-cliques, and
finally each level-5 clique contains 16 agents (level 6). There-
fore, this VLMAS consists of 2 × 165 = 2, 097, 152 agents.
As in the previous tasks, the initial and target distributions of
all cliques of all levels are first estimated, and subsequently,
the actual distributions are steered while satisfying the proba-
bilistic safety constraints for collision and obstacle avoidance.

Figures 5a-5d show the distributions of the cliques of levels
1 and 2. In particular, the 99.7%-confidence regions of the
initial (left) and target (right) distributions are shown with
dotted ellipses. Note that these distributions are the result
of DHDE, first computing the level-5 distributions, then the
level-4 ones, and so on - for a detailed demonstration, the
reader is referred to the supplementary video. The motion
of all level-1 (blue) and level-2 (red) distributions is shown
in Figs. 5a-5d for time instants k = 30, 60, 80, 100. As
DHDS is a top-down framework, the level-1 distributions are
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Fig. 4: A three-level large-scale scenario. In (a), the initial (LHS) and target (RHS) distributions of the robots (level 3, green)
are shown along with the level-2 ones (red) that are computed by DHDE. In (b), the level-1 distributions (blue) that are obtained
by DHDE are illustrated. In (c), we show the resulting (overlapping) level-1 distributions if the inter-clique non-overlapping
constraints are omitted. In (d)-(f), the distributions of all levels are steered to their targets (time instants k = 40, 60, 80,
respectively), while avoiding the obstacles in the middle (black circles). In (g)-(i), we focus into the black dotted boxes of the
above figures and show the motion of the level-3 distributions in more detail.
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Fig. 5: A six-level VLMAS scenario. Each level corresponds to a specific color (1: blue, 2: red, 3: green, 4: yellow, 5:
purple, 6: cyan). Fig. (a)-(d) show levels 1 and 2 at time instants k = 30, 60, 80, 100, respectively. The initial (left) and target
(right) distributions are shown with dotted ellipses. Fig. (e)-(g) display one specific level-2 clique and its level-3 subcliques
at k = 30, 60, 100. Similarly, Fig. (h)-(j) show one specific level-3 clique and its level-4 subcliques, Fig. (k)-(m) show one
specific level-4 clique and its level-5 subcliques, and Fig. (n)-(p) show one specific level-4 clique and its level-6 subcliques,
for the same time instants. Each clique we are “zooming“ into, is shown with a star in the figures of the above level.
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first steered to their targets while successfully avoiding the
obstacle. Subsequently, all level-2 clique distributions are also
steered to their corresponding targets while staying within
the limits of their parent cliques and avoiding collisions with
each other. In Fig. 5d all level-1, 2 clique distributions have
successfully reached to their targets.

In Figs. 5e-5g, we focus into a randomly selected level-
2 clique and illustrate the motion of the level-3 (green)
distributions that belong in this clique, for time instants
k = 30, 60, 100, respectively. As shown, all level-3 cliques
remain within the limits of their parent cliques, while also
avoiding collisions. In Fig. 5g, the level-3 cliques have reached
to their target configuration. Similarly, Figs. 5h-5j focus into a
level-3 clique and illustrate the motion of all level-4 (yellow)
sub-cliques that belong in this clique. Again, all cliques are
able to safely reach to their target distributions. The motion of
the distributions of specific cliques in levels 5 (purple) and 6
(cyan) are also shown in Figs. 5k-5m and 5n-5p, respectively.
All distributions of all levels are successfully steered to their
targets, which indicates that all agents have reached their target
distributions.

D. Comparison with Related Methods

Finally, we highlight the significant computational efficiency
and safety capabilities of DHDC by comparing it with the
Centralized CS (CCS) [4] and Distributed CS (DCS) [31]
methods. In CCS, the full level-L CS problem is solved
without any splitting being considered. In DCS, the level-
L CS problem is solved using an ADMM-based distributed
approach, which however cannot benefit from the hierarchical
structure of the VLMAS.

1) Computational Demands: To perform a computational
demands comparison, we repeat the task of Section V-C,
starting from small numbers of agents. All simulations were
performed in Matlab R2021b using MOSEK 9.1.9 [1] as
the optimization solver and a laptop computer with an 11th
Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz and a 32GB
RAM memory. The computational times for tasks ranging
from two agents to two million agents, are shown in Fig. 6.
The results highlight the superior scalability of DHDC against
DCS and CCS. This is mainly attributed to the following
reasons: i) First, DHDC does not require solving problems of
a significantly large scale given that there exist no cliques that
contain a very large number of cliques in the level below them.
ii) Second, the efficient variables splitting of the subproblems
in DHDC reduces the amount of necessary copy variables,
making DHDC significantly more computationally efficient
than DCS. iii) Third, in CCS, the multi-agent problem is
always solved in a centralized fashion, which leads to high-
dimensional semidefinite programming problems that soon
become computationally intractable.

2) Safety: Next, we conduct a comparison on the safety
capabilities of each method. Given that CCS cannot scale for
large-scale systems, we exclude it from the comparison. In
Fig. 7, we demonstrate the collisions percentages for DHDC
and DCS. As both methods enforce consensus through soft
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Fig. 6: Comparison of computational times between DHDC
(proposed), CCS and DCS.
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Fig. 7: Comparison of collision percentages between DHDC
(proposed) and DCS.

constraints, it follows that as tasks get more complicated,
collisions might appear. Nevertheless, DHDC outperforms
DCS in terms of safety as well, since the cliques/agents always
need to only consider safety constraints associated with the
other cliques/agents that are within the same clique, thus
making the optimization problems easier to solve.

VI. CONCLUSION

This paper proposes a scalable hierarchical distributed con-
trol framework named DHDC for the control of VLMAS that
admit a multi-level hierarchical clustered structure. The first
part of the framework, DHDE, associates the initial and target
configurations of the cliques of all levels to representative
Gaussian distributions that satisfy all the requirements of
the hierarchical structure. The second part, DHDS, steers
the distributions of all cliques and agents to their prescribed
target distributions. Simulation experiments demonstrate the
scalability of DHDC to VLMAS with up to two million robots.
Therefore, DHDC is shown to be able to control systems of
a very-large scale by exploiting the control of distributions
within hierarchical structures.
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Future work will focus on further expanding DHDC for
more general problem setups. A straightforward extension
would be to extend the framework for systems nonlinear
dynamics by incorporating nonlinear versions of CS [29, 33].
In addition, we wish to extend DHDC for the case where
the hierarchical structure is unknown by exploring the in-
corporation of hierarchical distribution alignment methods in
unsupervised learning such as [19, 36]. Finally, future work
will also focus on establishing formal convergence guarantees
for the proposed method.
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SUPPLEMENTARY MATERIAL

The following part serves as supplementary material includ-
ing the proofs and additional details that are not covered in
the main paper.

VII. DHDE DETAILS

A. Proof of Proposition 1
First, it is straightforward to show the equivalence be-

tween minimizing the costs in (11a) and (13a), since
DKL(N ℓ+1

n ∥N ℓ
i ) is given by

DKL(N ℓ+1
n ∥N ℓ

i ) =
1

2

[
log
|Σi|
|Σn|

− nx + tr(Σ−1
i Σn) (42)

+ (µi − µn)
TΣ−1

i (µi − µn)

]
which yields Ĵe

i (Qi, qi) after substituting with Qi = Σ−1
i ,

qi = Σ−1
i µi and neglecting the constant terms. Note that the

objective function Ĵe
i (Qi, qi) is jointly convex for Qi, qi.

Next, we show the equivalence between the constraints
(11b) and (13b)-(13c). For the convenience of the reader, let
us first restate a result known as the S-Lemma by Yakubovich
[34]. According to the S-Lemma, given two functions f1, f2 :
Rn → R with f1(x) = xTA1x + bT1 x + c1 and f2(x) =
xTA2x+bT2 x+c2 and if there exists an x̄ such that f1(x̄) > 0,
then the following is true

f1(x) ≥ 0⇒ f2(x) ≥ 0, ∀x, (43)

if and only if there exists a τ ≥ 0 such that f2(x) ≥
τf1(x), ∀x. In constraint (11b), we enforce that if x ∈ Rnp

is such that

(x− µ̄n)
TΣ̄−1

n (x− µ̄n) ≤ α, (44)

then it should follow that

(x− µ̄i)
TΣ̄−1

i (x− µ̄i) ≤ α. (45)

Using the S-Lemma, this is equivalent with imposing the
constraints τn ≥ 0, ∀n ∈ Cℓi and

α− (x− µ̄i)
TΣ̄−1

i (x− µ̄i) ≥ τ
(
α− (x− µ̄n)

TΣ̄−1
n (x− µ̄n)

)
,

which can be written in matrix form as

x̂TVnx̂ ≥ 0, (46)

where x̂ = [x; 1] and

Vn =

[
V11 V12

V T
12 V22

]
,

with

V11 = −Σ̄−1
i + τnΣ̄

−1
n , V12 = Σ̄−1

i µ̄i − τnΣ̄
−1
n µ̄n,

V22 = α− τnα− µ̄T
i Σ̄

−1
i µ̄i + τnµ̄

T
n Σ̄

−1
n µ̄n.

By definition, the constraint (46) is equivalent with Vn ⪰ 0.
Furthermore, by applying the Schur complement w.r.t. V22, it
follows that Vn ⪰ 0 is equivalent with Sn ⪰ 0, where

Sn =

S11 S12 0
ST
12 S22 S23

0T ST
23 S33

 , (47)

with

S11 = V11, S12 = V12, S22 = α− τnα+ τnµ̄
T
n Σ̄

−1
n µ̄n,

S23 = (Σ̄−1
i µ̄i)

T, S33 = Σ̄−1
i .

The expressions in (14c) follow after substituting with Qi and
qi. Finally, it is evident that the constraints (11c) and (13d)
are equivalent since Σi ≻ 0 if and only if Σ−1

i ≻ 0. Note
that all constraints are convex as well. Therefore, the problem
presented in Proposition 1 is a convex optimization one.

B. Proof of Proposition 2

The equivalence between the costs (16a) and (17a), as well
as the equivalence between the constraints (16b) and (17b)-
(17c) follow directly from Proposition 1. Next, we show that if
the constraints (17d) and (17e) are satisfied, then the constraint
(16c) is also satisfied. In fact, the constraint

Eθ[µ̄i, Σ̄i] ∩ Eθ[µ̄j , Σ̄j ] = ∅ (48)

will hold if the following constraint holds

C
[
Eθ[µ̄i, Σ̄i]

]
∩ C

[
Eθ[µ̄j , Σ̄j ]

]
= ∅, (49)

where C [E ] denotes the minimum area enclosing circle of an
ellipse E . Of course, C

[
Eθ[µ̄i, Σ̄i]

]
is a circle with center µ̄i

and radius
√
αλmax(Σ̄i), which is the major axis length of

Eθ[µ̄i, Σ̄i]. Hence, the constraint (49) can be rewritten as

∥µ̄i − µ̄j∥2 ≥
√

αλmax(Σ̄i) +
√

αλmax(Σ̄j). (50)

or equivalently as

∥Q̄−1
i q̄i − Q̄−1

j q̄j∥2 ≥
√
α√

λmin(Q̄i)
+

√
α√

λmin(Q̄j)
. (51)

By introducing the auxiliary variables ϕi, ϕj , the constraint
(51) is equivalent with the set of constraints

∥Q̄−1
i q̄i − Q̄−1

j q̄j∥2 ≥ ϕ
−1/2
i + ϕ

−1/2
j , (52a)

ϕ
−1/2
l ≥

√
α√

λmin(Q̄l)
, l ∈ {i, j} (52b)

where (52a) is the same as (17d). The constraint (52b) can be
rewritten as

Q̄l ⪰ ϕlαI (53)

which yields (17e). Finally, the constraints (16d) and (17f) are
equivalent.

C. ADMM Derivation

After introducing the augmented variables Q̃i, q̃i, ϕ̃i, and
the global ones G, g, z, the problem presented in Proposition
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2 can be reformulated as

min
∑

i∈Cℓ−1
a

Ĵe
i (Qi, qi) (54a)

s.t Si,n(Qi, qi, τi,n) ⪰ 0, n ∈ Cℓi , (54b)

τi,n ≥ 0, n ∈ Cℓi , (54c)

hi(Q̃i, q̃i, ϕ̃i) ≤ 0, (54d)
Ti(Qi, ϕi) ⪰ 0, (54e)
Qi ⪰ 0, (54f)

Q̃i = G̃i, q̃i = g̃i, ϕ̃i = z̃i, i ∈ Cℓ−1
a , (54g)

where hi(Q̃i, q̃i, ϕ̃i) is defined as

hi = [{hi,j(Qi, qi, ϕi, Q
i
j , q

i
j , ϕ

i
j)}j∈n[Cℓi ]]. (55)

Let us also introduce the indicator functions ISi(Qi, qi, τi,n),
Iτi,n(τi,n), Ihi(Q̃i, q̃i, ϕ̃i), ITi(Qi, ϕi), IQi(Qi), which take
a zero value if the constraints (54b), (54c), (54d), (54e), (54f),
respectively, are satisfied, and become infinite, otherwise.
Then, the Augmented Lagrangian (AL) for this problem can
be formulated as

L =
∑

i∈Cℓ−1
a

Ĵe
i (Qi, qi) + Ihi(Q̃i, q̃i, ϕ̃i) + ITi(Qi, ϕi)

+ IQi(Qi) +
∑
n∈Cℓi

ISi,n(Qi, qi, τi,n) + Iτi,n(τi,n)

+ tr(ΞT
i (Q̃i − G̃i)) + ξTi (q̃i − g̃i) + yTi (ϕ̃i − z̃i)

+
ρQ
2
∥Q̃i − G̃i∥2F +

ρq
2
∥q̃i − g̃i∥22 +

ρϕ
2
∥ϕ̃i − z̃i∥22.

Therefore, the ADMM updates are derived as follows. First,
the updates for the variables Q̃i, q̃i and ϕ̃i, are given by

{Q̃i, q̃i, ϕ̃i} = argminL (56)

for all i ∈ Cℓ−1
a . The minimization in (56) leads to the local

problems

{Q̃i, q̃i, ϕ̃i} = argmin J̃e
i (Q̃i, q̃i, ϕ̃i) (57a)

s.t Si,n(Qi, qi, τi,n) ⪰ 0, n ∈ Cℓi , (57b)

τi,n ≥ 0, n ∈ Cℓi , (57c)

hi(Q̃i, q̃i, ϕ̃i) ≤ 0, (57d)
Ti(Qi, ϕi) ⪰ 0, (57e)
Qi ≻ 0, (57f)

where

J̃e
i = Ĵe

i (Qi, qi) + tr(ΞT
i (Q̃i − G̃i)) + ξTi (q̃i − g̃i)

+ yTi (ϕ̃i − z̃i) +
ρQ
2
∥Q̃i − G̃i∥2F +

ρq
2
∥q̃i − g̃i∥22

+
ρϕ
2
∥ϕ̃i − z̃i∥22. (58)

Subsequently, the global variables G, g and z are updated by

{G, g, z} = argminL. (59)

using the updated values of Q̃i, q̃i and ϕ̃i, ∀i ∈ Cℓ−1
a . The

minimization in (59) can be separated for all Gi, gi and zi,
leading to the following averaging steps

Gi =
1

|m′[Cℓi ]|
∑

j∈m′[Cℓi ]

Qj
i (60a)

gi =
1

|m′[Cℓi ]|
∑

j∈m′[Cℓi ]

qji (60b)

zi =
1

|m′[Cℓi ]|
∑

j∈m′[Cℓi ]

ϕj
i . (60c)

After these updates are performed, then the dual variables are
updated through dual ascent steps, as follows

Ξi ← Ξi + ρQ(Q̃i − G̃i) (61a)
ξi ← ξi + ρq(q̃i − g̃i) (61b)

yi ← yi + ρϕ(ϕ̃i − z̃i), (61c)

by all i ∈ Cℓ−1
a .

D. Implementation Details

1) Constraint Linearization: In the local problems (21),
all cost terms and constraints are convex, except for the
constraint (21d). We accommodate for that by linearizing
the constraint in every ADMM iteration around the pre-
vious values of the included variables, which we denote
with Q̄′

i, q̄
′
i, ϕ

′
i, Q̄j

′, q̄j
′, ϕj

′, where we drop the superscript
i to lighten the notation. The first order Taylor approxima-
tion of hi,j around (Q̄′

i, q̄
′
i, ϕ

′
i, Q̄j

′, q̄j
′, ϕj

′) is denoted by
h̄i,j(Q̄i, q̄i, ϕi, Q̄j , q̄j , ϕj) where

h̄i,j = hi,j(Q̄
′
i, q̄

′
i, ϕ

′
i, Q̄

′
j , q̄

′
j , ϕ

′
j) + tr

(
∇Q̄i

hi,j

∣∣∣T
Q̄′

i

(Q̄i − Q̄′
i)

)
+ tr

(
∇Q̄j

hi,j

∣∣∣T
Q̄′

j

(Q̄j − Q̄′
j)

)
+∇q̄ihi,j

∣∣∣T
q̄′i

(q̄i − q̄′i)

+∇q̄jhi,j

∣∣∣T
q̄′j

(q̄j − q̄′j) +
∂hi,j

∂ϕj

∣∣∣∣
ϕ′
j

(ϕj − ϕ′
j)

+
∂hi,j

∂ϕi

∣∣∣∣
ϕ′
i

(ϕi − ϕ′
i),

with

∇Q̄i
hi,j =

1

∥ωi,j∥2
Q̄−T

i ωi,j(Q̄
−1
i q̄i)

T

∇Q̄j
hi,j = −

1

∥ωi,j∥2
Q̄−T

j ωi,j(Q̄
−1
j q̄j)

T

∇q̄ihi,j = −
1

∥ωi,j∥2
Q̄−T

i ωi,j

∇q̄jhi,j =
1

∥ωi,j∥2
Q̄−T

j ωi,j

ωi,j = Q̄−1
i q̄i − Q̄−1

j q̄j ,

∂hi,j

∂ϕi
= −1

2
ϕ
−3/2
i ,

∂hi,j

∂ϕj
= −1

2
ϕ
−3/2
j .
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2) Termination Criterion: We suggest two options for the
termination criterion in Line 10 of Alg. 1. The first one that
would not require any additional communication would be to
just set a maximum amount of ADMM iterations. The second
option would be to also check whether the ADMM primal and
dual residuals norms are below some prespecified thresholds to
allow for early termination. In particular, the primal residuals
norms are given by

ϵprimal,1 =
∑

i∈Cℓ−1
a

∥Q̃i − T̃i∥F ,

ϵprimal,2 =
∑

i∈Cℓ−1
a

∥q̃i − t̃i∥2,

ϵprimal,3 =
∑

i∈Cℓ−1
a

∥ϕ̃i − z̃i∥2,

while the dual residuals norms are given by

ϵdual,1 = ρQ
∑

i∈Cℓ−1
a

∥T̃i − T̃i,prev∥F ,

ϵdual,2 = ρq
∑

i∈Cℓ−1
a

∥t̃i − t̃i,prev∥2,

ϵdual,3 = ρϕ
∑

i∈Cℓ−1
a

∥z̃i − z̃i,prev∥2.

Note that the latter approach would require all agents i ∈ Cℓ−1
a

sending their variables to agent a so that the residuals are
computed.

VIII. DHDS DETAILS

A. Detailed Expressions

The decision variables ūi ∈ RNnu , Li ∈ RNnu×nx and
Ki ∈ RNnu×Nnx are given by ūi = [ūi,0; . . . ; ūi,N−1],

ūi =
[
ūT
i,0 ūT

i,1 · · · ūT
i,N−1

]T
,

Li =
[
LT
i,0 LT

i,1 · · · LT
i,N−1

]T
,

Ki =


0 0 . . . 0 0

Ki,(0,0) 0 . . . 0 0
Ki,(1,0) Ki,(1,1) . . . 0 0

...
...

. . .
...

...
Ki,(N−2,0) Ki,(N−2,1) . . . Ki,(N−2,N−2) 0

 .

The matrices Ψ0, Ψu and Ψw have the following form

Ψ0 =
[
I AT · · · ANT

]T
,

Ψu =


0 0 . . . 0
B 0 · · · 0
AB B · · · 0

...
...

. . .
...

AN−1B AN−2B · · · B

 ,

Ψw =


0 0 . . . 0
I 0 · · · 0
A I · · · 0
...

...
. . .

...
AN−1 AN−2 · · · I

 .

The mean state µi,k is given by

µi,k = fi,k(ūi) = Pkfi(ūi), (62)

where
fi(ūi) = Ψ0µi,0 +Ψuūi, (63)

and Pk :=
[
0, . . . , I, . . . , 0

]
∈ RNx×(N+1)Nx . Furthermore,

the state covariance Σi,k is given by

Σi,k = Fi,k(Li,Ki) = PkFi(Li,Ki)P
T
k , (64)

where

Fi(Li,Ki) := (Ψ0 +ΨuLi)Σi,0(Ψ0 +ΨuLi)
T

+ (Ψw +ΨuKi)W̄ (Ψw +ΨuKi)
T.

with W̄ = blkdiag(W, . . . ,W ) ∈ S+Nnx
.

B. Proof of Proposition 3

First, let us show the equivalence between costs (25a) and
(32a). The cost function J s

i (u
ℓ
i) can be rewritten as

J s
i (ui) = E[uT

i R̄ui] = E
[
tr(R̄iuiu

T
i )

]
= tr

(
E[R̄iuiu

T
i ]
)
.

Using (28), we obtain

J s
i (ui) = Ĵ s

i (ūi, Li,Ki)

= tr
(
E[R̄i(ūi + Lix̃i,0 +Kiwi)(ūi + Lix̃i,0 +Kiwi)

T]
)

= tr(R̄ūiū
T
i + R̄KiWKT

i + R̄LiΣi,0L
T
i )

= ūT
i R̄ūi + tr(R̄KiWKT

i + R̄LiΣi,0L
T
i ),

where x̃i,0 = xi,0−µi,0 and we used the facts that E[x̃i,0] = 0,
E[x̃i,0w

T
i ] = 0, E[wiw

T
i ] = W̄ and E[x̃i,0x̃

T
i,0] = Σi,0.

Furthermore, the dynamics constraints (25b) are implicitly
satisfied since in all expressions we use (31) for the state
means and covariances.

It is also trivial to show that the constraint fi,N (ūi) = 0
is equivalent to E[xi,N ] = µi,f . Moreover, if we write
Fi(Li,Ki) = Φi(Li,Ki)Φi(Li,Ki)

T with

Φi(Li,Ki) =
[
(Ψ0 +ΨuLi) (Ψw +ΨuKi)

]
Ωi, (65)
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where ΩiΩ
T
i = blkdiag(Σi,0,W ) and define Φi,k(Li,Ki) =

PkΦi(Li,Ki), then the constraint Σi,f ⪰ Fi,N (Li,Ki) =
Φi,k(Li,Ki)Φi,k(Li,Ki)

T is equivalent with

Fi,N (Li,Ki) =

[
Σi,f Φi,N (Li,Ki)

Φi,N (Li,Ki)
T I

]
⪰ 0 (66)

by using the Schur complement of Fi,N (Li,Ki) w.r.t. I .
Subsequently, we show that if the constraints
Qi,k(Li,Ki) ⪰ 0 and qi,j,k(ūi, ūj) ≥ 0 are satisfied,
then the constraint qi,j,k(pi,k, pj,k) ≥ 0 is satisfied as well.
In particular, the latter constraint will be true if the following
inequalities hold,

∥µ̄i,k − µ̄j,k∥2 ≥ dinter + 2r, (67a)√
αλmax(Σ̄i,k) ≤ r, (67b)

where we drop the superscripts ℓ for notational convenience. If
we plug the mean state expressions into (67a), then we obtain

∥f̄i,k(ūi)− f̄j,k(ūj)∥2 ≥ dinter + 2r, (68)

which yields the constraint qi,j,k(ūi, ūj) ≥ 0. Furthermore,
the constraint (67b) can be rewritten as

λmax(Σ̄i,k) ≤
r2

α
. (69)

which is equivalent with

HFi,k(Li,Ki)H
T − r2

α
⪯ 0. (70)

or using again the Schur complement with[ (
rℓ√
α

)2
I HΦi,k(Li,Ki)

Φi,k(Li,Ki)
THT I

]
⪰ 0 (71)

which is identical with Qi,k(Li,Ki) ⪰ 0. With similar argu-
ments, it can be shown that if the constraints Qi,k(Li,Ki) ⪰ 0
and si,k(ūi) ≥ 0 are satisfied, then the constraint si,k(pi.k) ≥
0 is also satisfied.

Finally, we wish to show that if the constraint p(ūi) ≤ 0
is true, then the constraint (25f) is also true. Since (67b)
holds, then it suffices to enforce a contraint that µ̄ℓ

i,k should
lie within an ellipse with center µ̄

(ℓ−1)
a,k , major axis length√

αλmax(Σ̄
(ℓ−1)
a,k )−r, minor axis length

√
αλmin(Σ̄

(ℓ−1)
a,k )−r,

and the same orientation as the ellipse Eθ[µ̄ℓ−1
a,k , Σ̄ℓ−1

a,k ]. These
specifications can be captured if the following inequality holds

(µ̄ℓ
i,k − µ̄ℓ−1

a,k )TP̂ (µ̄ℓ
i,k − µ̄ℓ−1

a,k ) ≤ 1, (72)

where

P̂ =
1

α
U Λ̂−1UT,

Λ̂ =

(
Λ1/2 − r√

α
I

)2

,

and [Λ, U ] is the eigendecomposition of Σ̄ℓ−1
a,k . This is true

since the ellipse P̂ and Σ̄ℓ−1
a,k have the same eigenvectors, the

major axis length of the ellipse in (72) is√
1

λmin(P̂ )
=

√
α

1

λmin(Λ̂−1)
=

√
αλmax(Λ̂)

=
√
αλmax

(
Λ1/2 − r√

α
I
)

=
√
α
(
λmax

(
Λ1/2

)
− r√

α

)
=

√
αλmax(Σ̄

(ℓ−1)
a,k )− r

and similarly it can be shown that the minor axis length is√
1

λmax(P̂ )
=

√
αλmin(Σ̄

(ℓ−1)
a,k )− r.

C. ADMM Derivation

The derivation is similar with the one in Section VII-C of
the SM. With the introduction of the augmented variables ũi

and global variable b, problem (35) can be reformulated as

{ūi}i∈Cℓ−1
a

= argmin
∑

i∈Cℓ−1
a

Ĵ s
i,1(ūi) (73a)

s.t. fi,N (ūi) = 0, si,k(ūi) ≥ 0, pi,k(ūi) ≤ 0, (73b)

qi,k(ũi) ≥ 0, k ∈ J0, NK, (73c)

ũi = b̃i, i ∈ Cℓ−1
a , (73d)

with hi = [{hi,j(ūi, ū
i
j)}j∈n[Cℓi ]]. The AL for this problem is

given by

L =
∑

i∈Cℓ−1
a

Ĵ s
i (ūi) + Ifi(ūi) + Isi(ūi) + Ipi

(ūi)

+ Iqi
(ũi) + vTi (ũi − b̃i) +

ρu
2
∥ũi − b̃i∥22,

where the indicator functions are of the same form as in
Section VII-C. The updates for the variables ũi, are given
by ũi = argminL, which leads to the local problems

ũi = argmin J̃ s
i,1(ũi) (74a)

s.t. fi,N (ūi) = 0, si,k(ūi) ≥ 0, pi,k(ūi) ≤ 0, (74b)

qi,j,k(ūi, ū
i
j) ≥ 0, j ∈ n[Cℓi ], k ∈ J0, NK, (74c)

with

J̃ s
i,1(ũi) = Ĵ s

i,1(ūi) + vTi (ũi − b̃i) +
ρu
2
∥ũi − b̃i∥22. (75)

The global update given by b = argminL, leads to the update
rules

bi =
1

|m′[Cℓi ]|
∑

j∈m′[Cℓi ]

ūj
i (76)

using the updated values of ūj
i . Finally, the dual updates are

given by
vi ← vi + ρu(ũi − b̃i). (77)
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D. Implementation Details

1) Constraint Linearization: In problems (36), all cost
terms and constraints are convex, except for the constraints
qi,j,k(ūi, ūj) ≥ 0 and si,k(ūi) ≥ 0. To address these non-
convexities, we linearize the constraints in every ADMM
iteration around ū′

i, ū
′
j , which are the previous values of ūi, ūj .

Thus, we replace the aforementioned constraints with

q̄i,j,k(ūi, ū
i
j) ≥ 0, j ∈ n[Cℓi ], k ∈ J0, NK, (78a)

s̄i,k(ūi) ≥ 0, k ∈ J0, NK, (78b)

where

q̄i,j,k(ūi, ūj) = qi,j,k(ū
′
i, ū

′
j) +∇ūi

qi,j,k

∣∣∣T
ū′
i

(ūi − ū′
i)

+∇ūj
qi,j,k

∣∣∣T
ū′
j

(ūj − ū′
j),

s̄i,k(ūi) = si,k(ū
′
i) +∇ūisi,k

∣∣∣T
ū′
i

(ūi − ū′
i)

and

∇ūiqi,j,k =
1

∥ζi,j,k∥2
(HPkΨu)

Tζi,j,k

∇ūj
qi,j,k = − 1

∥ζi,j,k∥2
(HPkΨu)

Tζi,j,k

ζi,j,k = HPk

(
Ψ0(µi,0 − µj,0) + Ψu(ūi − ūj)

)
∇ūisi,k =

1

∥ηi,k∥2
(HPkΨu)

Tηi,k

ηi,k = HPk

(
Ψ0µi,0 +Ψuūi

)
− po.

2) Termination Criterion: The termination criterion in Line
10 of Alg. 2 is similar with one presented in Section VII-D
of the SM. In particular, we either set a maximum amount of
ADMM iterations or check whether the residual norms

ϵprimal =
∑

i∈Cℓ−1
a

∥ũi − b̃i∥2,

ϵdual = ρu
∑

i∈Cℓ−1
a

∥b̃i − b̃i,prev∥2,

are below some predefined thresholds. Note that in the latter
case, all agents i ∈ Cℓ−1

a would be required to send their
variables to agent a during every ADMM iteration.

IX. SIMULATION DETAILS

In the simulation experiments, all agents are modeled
with 2D double integrator dynamics which are discretized
with dt = 0.05s. The time horizon is N = 100 for
all tasks. For the first two tasks, the noise covariance is
W = diag(0.02, 0.02, 0.2, 0.2)2, while for the third one it
is W = diag(10−3, 10−3, 10−2, 10−2)2. For all tasks, we set
θ = 0.997. For both DHDE and DHDS, the maximum amount
of ADMM iterations is set to 20. All penalty parameters are
selected to be ρ = 103.
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